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• Piezoelectric resonators for power regulation: 
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• Aluminum nitride (AlN) resonators: fabrication, 
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Piezoelectric Resonators for 
Power Regulation: 

Background and Motivation



Bulk Piezo-Transformers/Converters

Commercial DC-DC converters
Nihon Ceratec, Co, LTD., 
micromechatronics

Commercial piezo-transformers
Micromechatronics

49 kHz, HV

Step down, radial

• Early 90s, piezo-transformers offered solution to existing magnetic 
transformers for CCFL backlighting in LCD displays (laptops, PDAs, 
cameras, camcorders)

• Advantages
– Inherent high open circuit gain  providing high lamp ignition voltage
– Load dependent gain
– Absence of leakage magnetic field
– High Q factor
– Small size and low weight

• Bulk piezo-transformers  still too large for scales of interest

A. Carazo, “50 years of Piezoelectric Transformers: trends in the technology”.



Resonator Design: Must Haves 
• A mechanical resonator can be seen as formed by a 

transducer and a resonating body
Resonator bodyTransducer

• The transducer converts electrical into 
mechanical energy and vice versa. Its 
performance are defined by the 
electromechanical coupling, kt

2

• The overall resonator layout, material 
stack and interfaces affect the energy 
loss in the resonator. An inverse 
measure of loss is Q.
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Resonator Design: Must Haves 

• The Figure Of Merit is given by kt
2•Q

• kt
2, and Q are crucial component in setting resonator performance:
– Value of motional impedance:
– Power consumption and phase noise in an oscillator
– Insertion loss and bandwidth of a filter
– Gain and efficiency of a piezoelectric transformer

• For a piezoelectric transformer, a two-port model is generally used which 
takes into account the transformer ratio between input and output



Modes of operation
• Wide variety of modes
• Rosen, traditional type, but 

difficult to realize using 
microfabrication techniques 

Vin Vout

High voltage

Plate extensional 
mode

Ring extensional 
mode

Low voltage
Plate extensional 
mode

Plate thickness 
mode

Ring extensional 
mode

J. Yang, IEEE TUFFC, 2007.



Efficiency and Size Advantage
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Efficiency and Size Advantage
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One Port Resonator Inductance Density

Gardner, et al., “Review of On-Chip Inductor Structures 
with Magnetic Films,” IEEE TMAG, 2009.

• Thin-film piezoelectrics
implemented as one-port 
resonators

• Resonant inverters & 
resonant gate-drive 
applications

• Very high inductance 
densities (>106 nH / mm2) 
when compared with thin-
film, lumped element L’s

• Inductances ranging from 
few nH to several μH with 
Qs > 1,000 can be easily 
synthesized 
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Efficiency vs. Resonator Performance
• Thin film PT efficiency vs. resonator FoM
• Efficiency vs. load can be designed for by changing the 

resonator characteristic impedance (device sizing)   
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Aluminum Nitride 
Resonators



AlN Contour-Mode Resonator (CMR)
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AlN CMR Fabrication
• Process is intrinsically CMOS-compatible as it uses low 

temperature AlN sputtering and metals
• Currently working with Institute of MicroElectronics (IME) in 

Singapore to transfer process on 8” wafers and enable 
heterogeneous integration with CMOS (funded by IARPA)



High Frequency Impedance Transformation

Balun
Matching 
Network Filter

Single-Ended 
Antenna
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Differential Transceiver 
Integrated Circuits
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Piezoelectric AlN Contour-Mode SL 
Single-Ended-to-Differential FilterViVo −Vo +Vo + Vo − Vi
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• Multi-Frequency:    
272 MHz – 947 MHz

• Low Insertion Loss: 
1.9 dB for 1st order  
2.5 dB for 2nd order

• High Rejection:         
53 dB for 2nd order

• High CM Suppression 
33 dB for 2nd order
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High Frequency Impedance Transformation

• Electrodes are patterned and 
routed so as to ensure optimal 
coupling and single-ended to 
differential operation

• Single-ended to differential 
output enables 1:4 impedance 
transformation

• Single-ended to single-ended 
configuration can be easily 
implemented if more 
amenable to power converters

ViVo −Vo +

Vi

All blue 
electrodes are 
grounded



High Frequency Impedance Transformation

• Low loss transformation with 
properly matched load

• This device exhibited a FoM
around 60 (typical value for this 
class of resonators).  

• Impedance transformation 
demo’ed at 253 MHz, but 
individual resonators have been 
shown to work with the same 
performance up  to few GHz
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Lithium Niobate Resonators



LiNbO3 Resonator: Device Design
3D	drawing	of	a	typical	LFE	
micro‐resonator

Vibration	mode	shapes
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• Electric and acoustic boundary conditions define maximum 
energy coupling in the main mode of vibration

• A weighted finger design is used to improve device 
tolerances to process variations

Weighted Finger Design



LN Laterally Vibrating Resonators

• Based on ion slicing 
technique  (as SOI)

• Attains films of bulk quality

• Low temp process  
• Leverages conventional micromachining 

techniques 



One-Port LN Resonators

• kt
2 of 21.7%  and Q of 1300 

• High FoM of 282 demonstrated – One of the highest for MEMS resonators!  



Concluding Remarks
• AlN MEMS resonators are becoming a commercial reality for 

timing applications

• High frequency operation and large scale integration of 
resonators will ultimately enable new applications that take 
advantage of high Q passives – Power regulation is one of 
them.

• Challenges for deployment of AlN PT are in the system level 
implementation. LN resonator development requires further 
efforts at the device and process flow standardization before it 
becomes mainstream.

• The development of piezoelectric AlN and LN M/NEMS 
platforms will also enable the deployment of other high-
performance sensors and actuators 
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